The Algorithms logo
The Algorithms
AboutDonate
package DataStructures.Trees;

import java.util.ArrayList;
import java.util.List;

/**
 * <h1>Binary Search Tree (Recursive) Generic Type Implementation</h1>
 *
 * <p>
 * A recursive implementation of generic type BST.
 *
 * Reference: https://en.wikipedia.org/wiki/Binary_search_tree
 * </p>
 *
 * @author [Madhur Panwar](https://github.com/mdrpanwar)
 */
public class BSTRecursiveGeneric<T extends Comparable<T>> {
  /** only data member is root of BST */
  private Node<T> root;

  /** Constructor use to initialize node as null */
  public BSTRecursiveGeneric() {
    root = null;
  }

  /** main function for testing */
  public static void main(String[] args) {
    System.out.println("Testing for integer data...");
    // Integer
    DataStructures.Trees.BSTRecursiveGeneric<Integer> integerTree = new DataStructures.Trees.BSTRecursiveGeneric<Integer>();

    integerTree.add(5);
    integerTree.add(10);
    integerTree.add(9);
    assert !integerTree.find(4) : "4 is not yet present in BST";
    assert integerTree.find(10) : "10 should be present in BST";
    integerTree.remove(9);
    assert !integerTree.find(9) : "9 was just deleted from BST";
    integerTree.remove(1);
    assert !integerTree.find(1) : "Since 1 was not present so find deleting would do no change";
    integerTree.add(20);
    integerTree.add(70);
    assert integerTree.find(70) : "70 was inserted but not found";
    /*
     Will print in following order
     5 10 20 70
    */
    integerTree.inorder();
    System.out.println();
    System.out.println("Testing for string data...");
    // String
    DataStructures.Trees.BSTRecursiveGeneric<String> stringTree = new DataStructures.Trees.BSTRecursiveGeneric<String>();

    stringTree.add("banana");
    stringTree.add("pineapple");
    stringTree.add("date");
    assert !stringTree.find("girl") : "girl is not yet present in BST";
    assert stringTree.find("pineapple") : "10 should be present in BST";
    stringTree.remove("date");
    assert !stringTree.find("date") : "date was just deleted from BST";
    stringTree.remove("boy");
    assert !stringTree.find("boy") : "Since boy was not present so deleting would do no change";
    stringTree.add("india");
    stringTree.add("hills");
    assert stringTree.find("hills") : "hills was inserted but not found";
    /*
     Will print in following order
     banana hills india pineapple
    */
    stringTree.inorder();

  }

  /**
   * Recursive method to delete a data if present in BST.
   *
   * @param node the node under which to (recursively) search for data
   * @param data the value to be deleted
   * @return Node the updated value of root parameter after delete operation
   */
  private Node<T> delete(Node<T> node, T data) {
    if (node == null) {
      System.out.println("No such data present in BST.");
    } else if (node.data.compareTo(data) > 0) {
      node.left = delete(node.left, data);
    } else if (node.data.compareTo(data) < 0) {
      node.right = delete(node.right, data);
    } else {
      if (node.right == null && node.left == null) { // If it is leaf node
        node = null;
      } else if (node.left == null) { // If only right node is present
        Node<T> temp = node.right;
        node.right = null;
        node = temp;
      } else if (node.right == null) { // Only left node is present
        Node<T> temp = node.left;
        node.left = null;
        node = temp;
      } else { // both child are present
        Node<T> temp = node.right;
        // Find leftmost child of right subtree
        while (temp.left != null) {
          temp = temp.left;
        }
        node.data = temp.data;
        node.right = delete(node.right, temp.data);
      }
    }
    return node;
  }

  /**
   * Recursive insertion of value in BST.
   *
   * @param node to check if the data can be inserted in current node or its subtree
   * @param data the value to be inserted
   * @return the modified value of the root parameter after insertion
   */
  private Node<T> insert(Node<T> node, T data) {
    if (node == null) {
      node = new Node<>(data);
    } else if (node.data.compareTo(data) > 0) {
      node.left = insert(node.left, data);
    } else if (node.data.compareTo(data) < 0) {
      node.right = insert(node.right, data);
    }
    return node;
  }

  /**
   * Recursively print Preorder traversal of the BST
   *
   * @param node the root node
   */
  private void preOrder(Node<T> node) {
    if (node == null) {
      return;
    }
    System.out.print(node.data + " ");
    if (node.left != null) {
      preOrder(node.left);
    }
    if (node.right != null) {
      preOrder(node.right);
    }
  }

  /**
   * Recursively print Postorder traversal of BST.
   *
   * @param node the root node
   */
  private void postOrder(Node<T> node) {
    if (node == null) {
      return;
    }
    if (node.left != null) {
      postOrder(node.left);
    }
    if (node.right != null) {
      postOrder(node.right);
    }
    System.out.print(node.data + " ");
  }

  /**
   * Recursively print Inorder traversal of BST.
   *
   * @param node the root node
   */
  private void inOrder(Node<T> node) {
    if (node == null) {
      return;
    }
    if (node.left != null) {
      inOrder(node.left);
    }
    System.out.print(node.data + " ");
    if (node.right != null) {
      inOrder(node.right);
    }
  }

  /**
   * Recursively traverse the tree using inorder traversal
   * and keep adding elements to argument list.
   *
   * @param node the root node
   * @param sortedList the list to add the srted elements into
   */
  private void inOrderSort(Node<T> node, List<T> sortedList) {
    if (node == null) {
      return;
    }
    if (node.left != null) {
      inOrderSort(node.left, sortedList);
    }
    sortedList.add(node.data);
    if (node.right != null) {
      inOrderSort(node.right, sortedList);
    }
  }

  /**
   * Serach recursively if the given value is present in BST or not.
   *
   * @param node the node under which to check
   * @param data the value to be checked
   * @return boolean if data is present or not
   */
  private boolean search(Node<T> node, T data) {
    if (node == null) {
      return false;
    } else if (node.data.compareTo(data) == 0) {
      return true;
    } else if (node.data.compareTo(data) > 0) {
      return search(node.left, data);
    } else {
      return search(node.right, data);
    }
  }

  /**
   * add in BST. if the value is not already present it is inserted or else no change takes place.
   *
   * @param data the value to be inserted
   */
  public void add(T data) {
    this.root = insert(this.root, data);
  }

  /**
   * If data is present in BST delete it else do nothing.
   *
   * @param data the value to be removed
   */
  public void remove(T data) {
    this.root = delete(this.root, data);
  }

  /** To call inorder traversal on tree */
  public void inorder() {
    System.out.println("Inorder traversal of this tree is:");
    inOrder(this.root);
    System.out.println(); // for next line
  }

  /** return a sorted list by traversing the tree elements using inorder traversal */
  public List<T> inorderSort() {
    List<T> sortedList = new ArrayList<>();
    inOrderSort(this.root, sortedList);
    return sortedList;
  }

  /** To call postorder traversal on tree */
  public void postorder() {
    System.out.println("Postorder traversal of this tree is:");
    postOrder(this.root);
    System.out.println(); // for next line
  }

  /** To call preorder traversal on tree. */
  public void preorder() {
    System.out.println("Preorder traversal of this tree is:");
    preOrder(this.root);
    System.out.println(); // for next line
  }

  /**
   * To check if given value is present in tree or not.
   *
   * @param data the data to be found for
   */
  public boolean find(T data) {
    if (search(this.root, data)) {
      System.out.println(data + " is present in given BST.");
      return true;
    }
    System.out.println(data + " not found.");
    return false;
  }

  /** The generic Node class used for building binary search tree */
  private static class Node<T> {
    T data;
    Node<T> left;
    Node<T> right;

    /** Constructor with data as parameter */
    Node(T d) {
      data = d;
      left = null;
      right = null;
    }
  }
}

BSTRecursiveGeneric

M