The Algorithms logo
The Algorithms
AboutDonate
package DataStructures.Trees;

import DataStructures.Trees.BinaryTree.Node;

/**
 * Given a sorted array. Create a balanced binary search tree from it.
 *
 * Steps:
 * 1. Find the middle element of array. This will act as root
 * 2. Use the left half recursively to create left subtree
 * 3. Use the right half recursively to create right subtree
 */
public class CreateBSTFromSortedArray {

  public static void main(String[] args) {
    test(new int[]{});
    test(new int[]{1, 2, 3});
    test(new int[]{1, 2, 3, 4, 5});
    test(new int[]{1, 2, 3, 4, 5, 6, 7});
  }

  private static void test(int[] array) {
    BinaryTree root = new BinaryTree(createBst(array, 0, array.length - 1));
    System.out.println("\n\nPreorder Traversal: ");
    root.preOrder(root.getRoot());
    System.out.println("\nInorder Traversal: ");
    root.inOrder(root.getRoot());
    System.out.println("\nPostOrder Traversal: ");
    root.postOrder(root.getRoot());
  }

  private static Node createBst(int[] array, int start, int end) {
    // No element left.
    if (start > end) {
      return null;
    }
    int mid = start + (end - start) / 2;

    // middle element will be the root
    Node root = new Node(array[mid]);
    root.left = createBst(array, start, mid - 1);
    root.right = createBst(array, mid + 1, end);
    return root;
  }
}

CreateBSTFromSortedArray

A