The Algorithms logo
The Algorithms
AboutDonate
package DynamicProgramming;

// Matrix-chain Multiplication
// Problem Statement
// we have given a chain A1,A2,...,Ani of n matrices, where for i = 1,2,...,n, 
// matrix Ai has dimension pi−1 ×pi
// , fully parenthesize the product A1A2 ···An in a way that
// minimizes the number of scalar multiplications.

public class MatrixChainRecursiveTopDownMemoisation
{
    static int Memoized_Matrix_Chain(int p[]) {
        int n = p.length ;
        int m[][] = new int[n][n];
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < n; j++) {
                m[i][j] = Integer.MAX_VALUE;
            }
        }
        return Lookup_Chain(m, p, 1, n-1);
    }

    static int Lookup_Chain(int m[][],int p[],int i, int j)
    {
        if ( i == j )
        {
            m[i][j] = 0;
            return m[i][j];
        }
        if ( m[i][j] < Integer.MAX_VALUE )
        {
            return m[i][j];
        }
        
        else 
        {
            for ( int k = i ; k<j  ;k++)
            {
                int q = Lookup_Chain(m, p,i , k ) + Lookup_Chain(m, p, k+1 , j) + (p[i-1] * p[k] * p[j]);
                if ( q < m[i][j] )
                {
                    m[i][j] = q;
                }
            }
        }
        return m[i][j];
    }
    // in this code we are taking the example of 4 matrixes whose orders are 1x2,2x3,3x4,4x5 respectively
    // output should be  Minimum number of multiplications is 38
        public static void main (String[] args)
        {
 
            int arr[] = { 1, 2, 3, 4 ,5};
            System.out.println("Minimum number of multiplications is " + Memoized_Matrix_Chain(arr));
        }
}

MatrixChainRecursiveTopDownMemoisation

K