package DynamicProgramming;
// Matrix-chain Multiplication
// Problem Statement
// we have given a chain A1,A2,...,Ani of n matrices, where for i = 1,2,...,n,
// matrix Ai has dimension pi−1 ×pi
// , fully parenthesize the product A1A2 ···An in a way that
// minimizes the number of scalar multiplications.
public class MatrixChainRecursiveTopDownMemoisation
{
static int Memoized_Matrix_Chain(int p[]) {
int n = p.length ;
int m[][] = new int[n][n];
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
m[i][j] = Integer.MAX_VALUE;
}
}
return Lookup_Chain(m, p, 1, n-1);
}
static int Lookup_Chain(int m[][],int p[],int i, int j)
{
if ( i == j )
{
m[i][j] = 0;
return m[i][j];
}
if ( m[i][j] < Integer.MAX_VALUE )
{
return m[i][j];
}
else
{
for ( int k = i ; k<j ;k++)
{
int q = Lookup_Chain(m, p,i , k ) + Lookup_Chain(m, p, k+1 , j) + (p[i-1] * p[k] * p[j]);
if ( q < m[i][j] )
{
m[i][j] = q;
}
}
}
return m[i][j];
}
// in this code we are taking the example of 4 matrixes whose orders are 1x2,2x3,3x4,4x5 respectively
// output should be Minimum number of multiplications is 38
public static void main (String[] args)
{
int arr[] = { 1, 2, 3, 4 ,5};
System.out.println("Minimum number of multiplications is " + Memoized_Matrix_Chain(arr));
}
}