The Algorithms logo
The Algorithms
AboutDonate
use std::vec::Vec;

#[derive(Debug)]
pub struct Edge {
    source: i64,
    destination: i64,
    cost: i64,
}

impl PartialEq for Edge {
    fn eq(&self, other: &Self) -> bool {
        self.source == other.source
            && self.destination == other.destination
            && self.cost == other.cost
    }
}

impl Eq for Edge {}

impl Edge {
    fn new(source: i64, destination: i64, cost: i64) -> Self {
        Self {
            source,
            destination,
            cost,
        }
    }
}

fn make_sets(number_of_vertices: i64) -> Vec<i64> {
    let mut parent: Vec<i64> = Vec::with_capacity(number_of_vertices as usize);
    for i in 0..number_of_vertices {
        parent.push(i);
    }
    parent
}

fn find(parent: &mut Vec<i64>, x: i64) -> i64 {
    let idx: usize = x as usize;
    if parent[idx] != x {
        parent[idx] = find(parent, parent[idx]);
    }
    parent[idx]
}

fn merge(parent: &mut Vec<i64>, x: i64, y: i64) {
    let idx_x: usize = find(parent, x) as usize;
    let parent_y: i64 = find(parent, y);
    parent[idx_x] = parent_y;
}

fn is_same_set(parent: &mut Vec<i64>, x: i64, y: i64) -> bool {
    find(parent, x) == find(parent, y)
}

pub fn kruskal(mut edges: Vec<Edge>, number_of_vertices: i64) -> (i64, Vec<Edge>) {
    let mut parent: Vec<i64> = make_sets(number_of_vertices);

    edges.sort_unstable_by(|a, b| a.cost.cmp(&b.cost));
    let mut total_cost: i64 = 0;
    let mut final_edges: Vec<Edge> = Vec::new();
    let mut merge_count: i64 = 0;
    for edge in edges.iter() {
        if merge_count >= number_of_vertices - 1 {
            break;
        }

        let source: i64 = edge.source;
        let destination: i64 = edge.destination;
        if !is_same_set(&mut parent, source, destination) {
            merge(&mut parent, source, destination);
            merge_count += 1;
            let cost: i64 = edge.cost;
            total_cost += cost;
            let final_edge: Edge = Edge::new(source, destination, cost);
            final_edges.push(final_edge);
        }
    }
    (total_cost, final_edges)
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn test_seven_vertices_eleven_edges() {
        let mut edges: Vec<Edge> = Vec::new();
        edges.push(Edge::new(0, 1, 7));
        edges.push(Edge::new(0, 3, 5));
        edges.push(Edge::new(1, 2, 8));
        edges.push(Edge::new(1, 3, 9));
        edges.push(Edge::new(1, 4, 7));
        edges.push(Edge::new(2, 4, 5));
        edges.push(Edge::new(3, 4, 15));
        edges.push(Edge::new(3, 5, 6));
        edges.push(Edge::new(4, 5, 8));
        edges.push(Edge::new(4, 6, 9));
        edges.push(Edge::new(5, 6, 11));

        let number_of_vertices: i64 = 7;

        let expected_total_cost = 39;
        let mut expected_used_edges: Vec<Edge> = Vec::new();
        expected_used_edges.push(Edge::new(0, 3, 5));
        expected_used_edges.push(Edge::new(2, 4, 5));
        expected_used_edges.push(Edge::new(3, 5, 6));
        expected_used_edges.push(Edge::new(0, 1, 7));
        expected_used_edges.push(Edge::new(1, 4, 7));
        expected_used_edges.push(Edge::new(4, 6, 9));

        let (actual_total_cost, actual_final_edges) = kruskal(edges, number_of_vertices);

        assert_eq!(actual_total_cost, expected_total_cost);
        assert_eq!(actual_final_edges, expected_used_edges);
    }

    #[test]
    fn test_ten_vertices_twenty_edges() {
        let mut edges: Vec<Edge> = Vec::new();
        edges.push(Edge::new(0, 1, 3));
        edges.push(Edge::new(0, 3, 6));
        edges.push(Edge::new(0, 4, 9));
        edges.push(Edge::new(1, 2, 2));
        edges.push(Edge::new(1, 3, 4));
        edges.push(Edge::new(1, 4, 9));
        edges.push(Edge::new(2, 3, 2));
        edges.push(Edge::new(2, 5, 8));
        edges.push(Edge::new(2, 6, 9));
        edges.push(Edge::new(3, 6, 9));
        edges.push(Edge::new(4, 5, 8));
        edges.push(Edge::new(4, 9, 18));
        edges.push(Edge::new(5, 6, 7));
        edges.push(Edge::new(5, 8, 9));
        edges.push(Edge::new(5, 9, 10));
        edges.push(Edge::new(6, 7, 4));
        edges.push(Edge::new(6, 8, 5));
        edges.push(Edge::new(7, 8, 1));
        edges.push(Edge::new(7, 9, 4));
        edges.push(Edge::new(8, 9, 3));

        let number_of_vertices: i64 = 10;

        let expected_total_cost = 38;
        let mut expected_used_edges = Vec::new();
        expected_used_edges.push(Edge::new(7, 8, 1));
        expected_used_edges.push(Edge::new(1, 2, 2));
        expected_used_edges.push(Edge::new(2, 3, 2));
        expected_used_edges.push(Edge::new(0, 1, 3));
        expected_used_edges.push(Edge::new(8, 9, 3));
        expected_used_edges.push(Edge::new(6, 7, 4));
        expected_used_edges.push(Edge::new(5, 6, 7));
        expected_used_edges.push(Edge::new(2, 5, 8));
        expected_used_edges.push(Edge::new(4, 5, 8));

        let (actual_total_cost, actual_final_edges) = kruskal(edges, number_of_vertices);

        assert_eq!(actual_total_cost, expected_total_cost);
        assert_eq!(actual_final_edges, expected_used_edges);
    }
}

Minimum Spanning Tree

G