The Algorithms logo
The Algorithms
AboutDonate

Random Forest Regression

W
S
C
# Importing the libraries
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.ensemble import RandomForestRegressor
# Importing the dataset
dataset = pd.read_csv('Position_Salaries.csv')
X = dataset.iloc[:, 1:2].values
y = dataset.iloc[:, 2].values
# Fitting Random Forest Regression to the dataset
regressor = RandomForestRegressor(n_estimators = 300, random_state = 0)
regressor.fit(X, y)
RandomForestRegressor(bootstrap=True, criterion='mse', max_depth=None,
           max_features='auto', max_leaf_nodes=None,
           min_impurity_split=1e-07, min_samples_leaf=1,
           min_samples_split=2, min_weight_fraction_leaf=0.0,
           n_estimators=300, n_jobs=1, oob_score=False, random_state=0,
           verbose=0, warm_start=False)
# Predicting a new result
y_pred = regressor.predict(6.5)
print(y_pred)
[ 160333.33333333]
# Visualising the Random Forest Regression results (higher resolution)
X_grid = np.arange(min(X), max(X), 0.01)
X_grid = X_grid.reshape((len(X_grid), 1))
plt.scatter(X, y, color = 'red')
plt.plot(X_grid, regressor.predict(X_grid), color = 'blue')
plt.title('Truth or Bluff (Random Forest Regression)')
plt.xlabel('Position level')
plt.ylabel('Salary')
plt.show()