The Algorithms logo
The Algorithms
AboutDonate

Scikit-Learn

import numpy as np
from sklearn.preprocessing import MinMaxScaler
data = np.random.randint(0,100,(10,2))
data
array([[90, 77],
       [82, 35],
       [ 9, 71],
       [20, 64],
       [39, 42],
       [74, 45],
       [35, 37],
       [92, 64],
       [49,  0],
       [11, 63]])
import matplotlib
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
x=data[:,0]
y=data[:,1]

plt.figure(figsize=(8,6))
plt.plot(x,y,'r')

plt.xlabel('x')
plt.ylabel('y')

plt.title(r"Plot of y")
plt.show()
scaler_model=MinMaxScaler()
scaler_model.fit(data)
MinMaxScaler(copy=True, feature_range=(0, 1))
result=scaler_model.transform(data)
#scaler_model_fit_transform(data) Alternative to the above 2 steps
result
array([[0.97590361, 1.        ],
       [0.87951807, 0.45454545],
       [0.        , 0.92207792],
       [0.13253012, 0.83116883],
       [0.36144578, 0.54545455],
       [0.78313253, 0.58441558],
       [0.31325301, 0.48051948],
       [1.        , 0.83116883],
       [0.48192771, 0.        ],
       [0.02409639, 0.81818182]])
x=result[:,0]
y=result[:,1]

plt.figure(figsize=(8,6))
plt.plot(x,y,'r')

plt.xlabel('x')
plt.ylabel('y')

plt.title(r"Plot of y")
plt.show()
data
array([[90, 77],
       [82, 35],
       [ 9, 71],
       [20, 64],
       [39, 42],
       [74, 45],
       [35, 37],
       [92, 64],
       [49,  0],
       [11, 63]])
import pandas as pd
data= pd.DataFrame(data=np.random.randint(0,101,(50,4)),columns=['f1','f2','f3','label'])
data.head()
f1 f2 f3 label
0 59 38 9 67
1 33 33 57 42
2 0 73 68 56
3 75 27 41 86
4 33 20 0 100
x=data[['f1','f2','f3']]
y=data['label']
from sklearn.model_selection import train_test_split
X_train,X_test,Y_train,Y_test=train_test_split(x,y,test_size=0.3,random_state=101)
X_train.shape
(35, 3)
X_test.shape
(15, 3)
Y_train.shape
(35,)
Y_test.shape
(15,)